今天是:

千个单词

千个单词

当前位置: 首页  千个单词

石油化学工程学院专业英语单词与专业词组汇编

发布日期:2023-06-09    作者:    来源:学习平台     点击:278
目  录
前  言... I
模块一  基础化学篇... 1
任务一  无机化学常用词汇... 1
任务二  无机化学短文阅读... 2
任务三  有机化学常用的词汇... 3
任务四  有机化学短文阅读... 3
任务五  分析化学常用词汇... 5
任务六  分析化学短文阅读... 6
模块二  石化、炼油工艺篇... 8
任务一  常用的石化、炼油工艺流程词汇... 8
任务二  常用的化学物质及特性词汇... 8
任务三  石油化工经典短文阅读... 9
1. Origin of Oil and Gas. 9
2. Petrochemicals. 10
3. Petroleum refining. 11
附录一  科技英语构词法... 12
附录二  化学元素表... 16
附录三  部分重要组织机构名称中英文对照表... 17
参考文献... 19

模块一   基础化学篇
任务一  无机化学常用词汇(Words & Phrases of Inorganic Chemistry)

acetic acid醋酸
acid酸
acid-base  indicator酸-碱指示剂
acidic酸性的
addition加成
alkali碱
alkaline碱性的
alkaline metal碱金属
aluminum铝
ammonia氨,氨水
ammonium nitrite亚硝酸铵
anion(negative ion)阴离子
atom原子
atomic structure原子结构
barium钡
bond键
bond angle键角
bromine溴
buffer缓冲液
calcium钙
calcium carbonate碳酸钙
calcium phosphate磷酸钙
calcium sulphate硫酸钙
carbon碳
carbon dioxide二氧化碳
carbon monoxide一氧化碳
carbon-carbon bond碳-碳键
carbonic acid碳酸
cation(positive ion)阳离子
chemical bond化学键
chlorine氯
chromium铬
coordinate bond配位键
copper铜
covalent bond共价键
dissociation constant  解离常数
double bond双键
EDTA乙二胺四乙酸
electrolysis电解
electron电子
excited state激发态
fluorine氟
ground state基态
halogenation卤化
hydrochloric acid盐酸
hydrogen氢
hydrogen bond氢键
hydrogen peroxide过氧化氢
hydrogen sulphide硫化氢
hydrolyze水解
inorganic chemistry无机化学
inorganic compound无机化合物
iodine碘
ion离子
ionic bond离子键
iron铁
lone pair孤对电子
magnesium镁
magnesium hydroxide氢氧化镁
manganese锰
metallic bond金属键
molecular formula分子式
molecular orbital分子轨道
molecules分子
neutral中性的
neutralization中和
neutron中子
nitration硝化(作用)
nitric acid硝酸
nitrogen氮
nitrous acid亚硝酸
oxidation氧化
oxidizing agent氧化剂
oxygen氧
perchloric acid高氯酸
phenolphthalein酚酞
phosphoric acid磷酸
phosphorus磷
platinum铂
polar bond极性键
potassium钾
potassium bicarbonate碳酸氢钾
potassium bromide溴化钾
potassium hydroxide氢氧化钾
potassium nitrate硝酸钾
proton质子
proton acceptor质子接受体
proton donor质子给(予)体
reducing agent还原剂
reduction还原
silicon硅
silver银
silver bromide溴化银
silver chloride氯化银
silver nitrate硝酸银
single bond单键
sodium钠
sodium bicarbonate碳酸氢钠
sodium carbonate碳酸钠
sodium chloride氯化钠
sodium nitrite亚硝酸钠
sodium peroxide过氧化钠
sodium sulfite亚硫酸钠
sodium sulphate硫酸钠
solute溶质
solution溶液
solvent溶剂
strong acid强酸
strong base强碱
substitution取代
sulfur硫
sulfuric acid硫酸
sulphonation磺化(作用)
synthesize合成
the periodic table元素周期表
valence化合价
van der waals bond范德华键
weak acid弱酸
weak base弱碱
zinc锌
zinc oxide氧化锌

任务二  无机化学短文阅读( Readings of Inorganic Chemistry English)
Inorganic chemistry is the branch of chemistry concerned with the properties and reactions of inorganic compounds. This includes all chemical compounds except the many which are based upon chains or rings of carbon atoms, which are termed organic compounds and are studied under the separate heading of organic chemistry. The distinction between the two disciplines is not absolute and there is much overlap, most importantly in the sub-discipline of organometallic chemistry.
The bulk of inorganic compounds occur as salts, the combination of cations and anions joined by ionic bonding. Examples of cations are sodium Na +, and magnesium Mg 2+ and examples of anions are oxide O 2 and chloride Cl . As salts are neutrally charged, these ions form compounds such as sodium oxide Na 2O or magnesium chloride MgCl 2. The ions are described by their oxidation state and their ease of formation can be inferred from the ionization potential (for cations) or from the electron affinity (anions) of the parent elements.
Important classes of inorganic compounds are the oxides, the carbonates, the sulfates and the halides. Many inorganic compounds are characterized by high melting points. Inorganic salts typically are poor conductors in the solid state. Another important feature is their solubility in e.g. water, and ease of crystallization. Where some salts (e.g. NaCl) are very soluble in water, others (e.g. SiO 2) are not.
The simplest inorganic reaction is double displacement when in mixing of two salts the ions are swapped without a change in oxidation state. In redox reactions one reactant, the oxidant, lowers its oxidation state and another reactant, the reductant, has its oxidation state increased. The net result is an exchange of electrons. Electron exchange can occur indirectly as well, e.g. in batteries, a key concept in electrochemistry.
When one reactant contains hydrogen atoms, a reaction can take place by exchanging protons in acid-base chemistry. In a more general definition, an acid can be any chemical species capable of binding to electron pairs is called a Lewis acid; conversely any molecule that tends to donate an electron pair is referred to as a Lewis base. As a refinement of acid-base interactions, the HSAB theory takes into account polarizability and size of ions.
Inorganic compounds are found in nature as minerals. Soil may contain iron sulfide as pyrite or calcium sulfate as gypsum. Inorganic compounds are also found multitasking as biomolecules: as electrolytes (sodium chloride), in energy storage (ATP) or in construction (the polyphosphate backbone in DNA).
The first important man-made inorganic compound was ammonium nitrite for soil fertilization through the Haber process. Inorganic compounds are synthesized for use as catalysts such as vanadium(V) oxide and titanium(III) chloride, or as reagents in organic chemistry such as lithium aluminium hydride.
Subdivisions of inorganic chemistry are organometallic chemistry, cluster chemistry and bioinorganic chemistry. These fields are active areas of research in inorganic chemistry, aimed toward new catalysts, superconductors, and therapies.
任务三  有机化学常用的词汇( Words & Phrases of Organic Chemistry)

acid anhydride酸酐
acyl halide酰卤
alcohol醇
aldehyde醛
aliphatic脂肪族的
alkane烷烃
alkene烯烃
alkyne炔
allyl烯丙基
amide氨基化合物
amine胺
amino acid氨基酸
aromatic compound芳香化合物
aromatic ring芳环,苯环
branched-chain支链
butyl丁基
carbonyl羰基
carboxyl羧基
chain链
chelate螯合
chiral center手性中心
conformers构象
copolymer共聚物
derivative衍生物
dextrorotatory右旋性的
diazotization重氮化作用
dichloromethane二氯甲烷
ester酯
ethyl乙基
fatty acid脂肪酸
functional group官能团
General formula通式
glycerol甘油,丙三醇
heptyl庚基
heterocyclic杂环的
hexyl己基
homolog同系物
hydrocarbon烃,碳氢化合物
hydrophilic亲水的
hydrophobic疏水的
hydroxide羟基
ketone酮
levorotatory左旋性的
methyl甲基
molecular formula分子式
monomer单体
octyl辛基
Open chain开链
optical activity旋光性(度)
organic有机的
organic chemistry有机化学
Organic compounds有机化合物
pentyl戊基
phenol苯酚
phenyl苯基
polymer聚合物,聚合体
propyl丙基
ring-shaped环状结构
saturated compound饱和化合物
side chain侧链
straight chain直链
Structural formula结构式
tautomer互变(异构)体
triglyceride甘油三酸酯
unsaturated compound不饱和化合物
zwitterions两性离子

任务四  有机化学短文阅读 (Readings of Organic Chemistry English)
The nature of Organic Chemistry has changed greatly since 1828. Before that time the scientific philosophy known as “Vitalism” maintained that Organic Chemistry was the chemistry of living systems. It maintained that Organic Compounds could only be produced within living matter while Inorganic compounds were synthesized from non-living matter. Even the word “organic” comes from the same root as the word “organism” or “organ”. However people like Professor Wohler beginning in 1828 determined that it was indeed possible to synthesize organic compounds from those compounds that were considered inorganic. One of the first organic compounds synthesized from basically inorganic compounds was the compound Urea which is a metabolic product of urine. It was synthesized from Ammonium Cyanate considered a compound produced outside of living matter and therefore considered inorganic. Since then many millions of Organic compounds have been synthesized “in vitro” in other words outside living tissue.
The building block of structural organic chemistry is the tetravalent carbon atom. With few exceptions, carbon compounds can be formulated with four covalent bonds to each carbon, regardless of whether the combination is with carbon or some other element. The two-electron bond, which is illustrated by the carbon-hydrogen bonds in methane or ethane and the carbon-carbon bond in ethane, is called a single bond. In these and many related substances, each carbon is attached to four other atoms:
There exist, however, compounds such as ethene (ethylene), C 2H 4, in which two electrons from each of the carbon atoms are mutually shared, thereby producing two two-electron bonds, an arrangement which is called a double bond. Each carbon in ethene is attached to only three other atoms:
Similarly, in ethyne (acetylene), C 2H 2, three electrons from each carbon atom are mutually shared, producing three two-electron bonds, called a triple bond, in which each carbon is attached to only two other atoms:
By convention, a single straight line connecting the atomic symbols is used to represent a single (two-electron) bond, two such lines to represent a double (four-electron) bond, and three lines a triple (six-electron) bond. Representations of compounds by these symbols are called structural formulas; some examples are
To save space and time in the representation of organic structures, it is common practice to use “condensed formulas” in which the bonds are not shown explicitly. In using condensed formulas,normal atomic valences are understood throughout. Examples of condensed formulas are
Another type of abbreviation that often is used, particularly for ring compounds, dispenses with the symbols for carbon and hydrogen atoms and leaves only the lines in a structural formula. For instance, cyclopentane, C 5H 10, often is represented as a regular pentagon in which it is understood that each apex represents a carbon atom with the requisite number of hydrogens to satisfy the tetravalence of carbon:
任务五  分析化学常用词汇( Words & Phrases of Analytical Chemistry)

absolute error绝对误差
Accuracy准确度
analyte(被)分析物
assay化验
background背景
blank空白
calibration校准,标度,刻度
coefficient of variation变异系数
confidence level置信水平
constituent成分
detection limit检出限
determination测定
sensitivity灵敏度
significant figure有效数字
solubility product溶度积
Specificity专属性
standard addition标准加入法
standard deviation标准偏差
standardization标定法
stoichiometric point化学计量点
systematic error系统误差
titration滴定
validation of methods方法的有效性
equivalent point等当点
estimation估算
gross error总误差
impurity杂质
indicator指示剂
interference干扰
internal standard内标
level of significance显著性水平
limit of quantitation定量限
masking掩蔽
matrix基体
precision精确度
primary standard原始标准物
purity纯度
qualitative analysis定性分析
quantitative analysis定量分析
random error偶然误差
reagent试剂
relative error相对误差
relative standard deviation(RSD) 相对标准偏差
Robustness耐用性
Ruggedness重现性
sample样品
Selectivity选择性

任务六  分析化学短文阅读( Readings of Analytical Chemistry English)
Analytical chemistry is the science of making quantitative measurements. In practice, quantifying analytes in a complex sample becomes an exercise in problem solving.
Titration
Titration is the quantitative measurement of an analyte in solution by completely reacting it with a reagent solution. The reagent is called the titrant and must either be prepared from a primary standard or be standardized versus a primary standard to know its exact concentration.
The point at which all of the analyte is consumed is the equivalence point. The number of moles of analyte is calculated from the volume of reagent that is required to react with all of the analyte, the titrant concentration, and the reaction stoichiometry.
The equivalence point is often determined by visual indicators are available for titrations based on acid-base neutralization, complexation, and redox reactions, and is determined by some type of indicator that is also present in the solution. For acid-base titrations, indicators are available that change color when the pH changes. When all of the analyte is neutralized, further addition of the titrant causes the pH of the solution to change causing the color of the indicator to change.
If the pH of an acid solution is plotted against the amount of base added during a titration, the shape of the graph is called a titration curve. All acid titration curves follow the same basic shapes.
Strong Acid Titration Curve
At the beginning, the solution has a low pH and climbs as the strong base is added. As the solution nears the point where all of the H + are neutralized, the pH rises sharply and then levels out again as the solution becomes more basic as more OH- ions are added.
Manual titration is done with a buret, which is a long graduated tube to accurately deliver amounts of titrant. The amount of titrant used in the titration is found by reading the volume of titrant in the buret before beginning the titration and after reaching the endpoint. The difference in these readings is the volume of titrant to reach the endpoint. The most important factor for making accurate titrations is to read the buret volumes reproducibly. The figure shows how to do so by using the bottom of the meniscus to read the reagent volume in the buret.
The end point can be determined by an indicator as described above or by an instrumental method. The most common instrumental detection method is potentiometric detection. The equivalence point of an acid-base titration can be detected with a pH electrode. Titrations, such as complexation or precipitation, involving other ions can use an ion-selective electrode (ISE). UV-vis absorption spectroscopy is also common, especially for complexometric titrations where a subtle color change occurs.
For repetitive titrations, autotitrators with microprocessors are available that deliver the titrant, stop at the endpoint, and calculate the concentration of the analyte. The endpoint is usually detected by some type of electrochemical measurement. Some examples of titrations for which autotitrators are available include:
·         Acid or base determination by pH measurement with potentiometric detection.
·         Determination of water by Karl Fischer reagent (I 2 and SO 2 in methyl alcohol and pyridine) with coulometric detection.
·         Determination of Cl in aqueous solution with phenylarsene oxide using amperometric detection.
模块二    石化、炼油工艺篇

任务一  常用的石化、炼油工艺流程词汇

连续过程continuous process
间歇过程batch process
工艺叙述process description
工艺特点process feature
操作operation
反应reaction
副反应side reaction
絮凝flocculation
浮洗flotation
倾析decantation
催化反应catalytical reaction
萃取extraction
中和neutralization
水解hydrolysis
过滤filtration
干燥drying
还原reduction
氧化oxidation
氢化hydrogenation
分解decomposition
离解dissociation
合成synthetics
吸收absorption
吸附adsorption
解吸desorption
结晶crystallization
溶解solution
调节modulate
控制control
悬浮suspension
循环circulation
再生regeneration
再活化reactivation
沥取leaching
破碎crushing
煅烧caloination
沉降sedimentation
沉淀precipitation
气化gasification
冷冻refrigeration
固化、结晶solidification
包装package
升华sublimation
燃烧combustion
引烧ignition
蒸馏distillation
碳化carbonization
压缩compression

任务二  常用的化学物质及特性词汇

固体solid
液体liquid
气体gas
化合物compound
混合物mixture
粉powder
片状粉未flake
小粒granule
结晶crystal
乳化物emulsion
氧化物oxidizing agent
还原剂reducing agent
有机物organic material
真空vacuum
母液master liquor
富液rich liquor
贫液lean liquor
萃出物extract
萃余物raffinate
絮凝剂flocculants
冷冻盐水brine
酸度acidity
浓度concentration
碱度alkalinity
溶解度solubility
凝固点solidificalion point
沸点boiling point
熔点melting point
蒸发率evaporation rate
粘度viscosity
吸水的water absorbent(a)
无水的anhydrous(a)
外观appearance
无色的colorless(a)
透明的transparent(a)
半透明的translucent
密度density
比重specific gravity
催化剂catalyst
燃烧combustion
引燃ignition
自然点self-ignition temperature
可燃气体combustible gas
可燃液体inflammable liquid
易燃液体volatile liquid
爆炸混合物explosive mixture
爆炸性环境
explosive atmosphere(environment)
爆炸极限
explosive concentration limit
废水waste water
废液waste liquid
废气off-gas
噪声noise pollution
成分composition
挠度deflection
力和力矩force and moment
弯矩bending moment
应力-应变曲线
stress-strain diagram
百分比percentage
环境温度ambient temperature
工作温度operating
设计温度
design temperature(pressure)
相对湿度RH=relative humidity
油渣、淤泥sludge
杂质impurity

任务三  石油化工经典短文阅读
1. Origin of Oil and Gas
Oil and gas result mostly from dead microorganisms buried quickly in anoxic environments, where oxygen is so scarce that they do not decompose. This lack of oxygen enables them to maintain their hydrogen-carbon bonds, a necessary ingredient for the production of fossil fuels. Newly developing ocean basins, formed by plate tectonics and continental rifting (deformation), provide just the right conditions for rapid burial in anoxic waters.  Rivers fill these basins with sediments carrying abundant organic remains. Because the basins have constricted water circulation, they also have lower oxygen levels than the open ocean.
Plate tectonics is also responsible for creating the "pressure cooker" that slowly matures the organics into oil and gas. This process usually takes millions ofyears, giving the oil and gas deposits time to migrate around the globe on the back of plate movements.  Because these hydrocarbons are much more buoyant than water, they eventually force their way to the surface. Alternatively, rifting, collisions between landmasses, and other tectonic forces can free the mature oil and gas from deep within sedimentary basins and then trap these organic fluids in reservoirs before they escape to the earth's surface.  We know these reservoirs as oil and gas fields.
The same plate tectonics that creates the locations and conditions for anoxic burial is also responsible for the geologic paths that these sedimentary basins subsequently take. Continental drift, subduction (where one plate thrusts under another) and collision with other continents provide the movement from swamps, river deltas and mild climates --- where most organics are deposited --- to the poles and deserts, where they have ended up today by coincidence.
【课文参考译文】
石油和天然气的成因
石油和天然气大多是由缺氧环境下迅速被掩埋的死亡微生物生成的。这种环境氧气奇缺致使这些微生物无法分解。氧气的缺乏能够使那些死去的微生物保持它们的碳氢键——这是产生化石燃料的一种必要组分。由板块构造运动和大陆裂谷作用(变形)而新近演化形成的大洋盆地,正好为在缺氧水域的快速埋藏提供了合适环境。河流携带着丰富的有机残余物充填这些盆地。由于这些盆地的水循环受到局限。因此,它们的含氧量比开阔大洋更低。
板块构造还形成了一个使有机质缓慢成熟演化成石油和天然气的“压力锅”。油气生成过程通常要经历数百万年,从而为在板块运动背景下油气的运移提供了时间。因为烃类化合物比水的浮力大,所以它们最终会竭力上升到地表。同时裂谷作用,板块之间的碰撞以及其它构造力可以将沉积盆地深处成熟的石油或者天然气释放出来,并在这些有机流体逸散到地表之前,将它们圈闭在油气藏中,我们称这些油气藏为油气田。
为缺氧条件下微生物的埋藏提供了空间和条件的板块构造运动同样对这些沉积盆地的后期地质演化起着重要作用。大陆漂移、俯冲(一个板块俯冲到另一板块之下的过程)以及和其它大陆的碰撞作用能使沼泽、河流三角洲和温带气候区(大部分有机质沉积的地方)恰巧演变成现今的极地和沙漠环境。
2. Petrochemicals
Petrochemicals are generally chemical compounds derived from petroleum either by direct manufacture or by indirect manufacture as by-products from the variety of processes that are used during the refining of petroleum. Gasoline, kerosene, fuel oils, lubricating oils, waxes, asphalts, and the like are excluded from the definition of petrochemicals, since they are, not, in the true sense, chemical compounds but are in fact intimate mixtures of hydrocarbons.
The classification of materials such as petrochemicals is used to indicate the source of the chemical compounds, but it should be remembered that many common petrochemicals can be made from other sources, and the terminology is therefore a matter of source identification.
The manufacture of chemicals from petroleum is based on the ready response of the various compound types to basic chemical reactions, such as oxidation, halogenation, nitration, dehydrogenation, addition, polymerization, and alkylation. The low-molecular-weight paraffins and olefins, as found in natural gas and refinery gases, and the simple aromatic hydrocarbons have so far been of the most interest because it is these individual species that can readily be isolated and dealt with. A wide range of compounds is possible, many are being manufactured, and we are now progressing the stage in which a sizable group of products is being prepared from the heavier fractions of petroleum. For example, the various reactions of petroleum heavy ends, in particular the asphaltenes, indicate that these materials may be regarded as chemical entities and are able to participate in numerous chemical or physical conversions to, perhaps, more useful materials. The overall effect of these modifications is the production of materials that either afford good-grade aromatic cokes comparatively easily or the formation of products bearing functional groups that may be employed as a nonfuel material.
【课文参考译文】
石化产品
石化产品通常指直接或间接地从石油中提炼的化合物,这些化合物往往是石油炼制各种过程中产生的副产品。汽油、煤油、燃料油、润滑油、石蜡、沥青以及诸如此类的产品不属于石化产品。因为,从严格意义上说,它们不是化合物,而是烃类的混合物。
像“石化产品”这样的物质分类用来表明化合物的来源。但应记住,许多我们所熟知的石化产品也可以通过其他途径生产,因而这一术语只是用来识别原料的来源。
从石油生产化学品是基于各种类型的化合物对各种基本化学反应响应迅速,如氧化反应、卤化反应、硝化反应、脱氢反应、加成反应、聚合反应和烷基化反应。迄今为止,人们最感兴趣的是从天然气和炼厂气中所得到的低分子量链烷烃和烯烃,以及轻质芳烃,因为这些物质能够进行迅速分离和处理。大量化合物都有望得到,其中许多化合物正在生产。目前我们正在探索如何从石油的重质馏分中提炼数量可观的产品。比如石油重质馏分,尤其是沥青质的各种反应表明可以将这些物质当做化学单体,能够通过各种化学和物理反应将其转变成更有价值的产品。这些转化的总体效果是,所生产的物质能够相对容易地用作高品质芳焦,或者能够形成带有官能团的产品,用作非燃料原料。
3. Petroleum refining
Petroleum refining is the separation of petroleum into fractions and the subsequent treating of these fractions to make them into petroleum products. Most petroleum products, including kerosenes, fuel oils, lubricating oils, and waxes, are fractions of petroleum that have been treated to remove undesirable components. Other products, for example, gasolines, aromatic solvents, and even some asphalts, are totally or partly sy.nthetic in that they have compositions that are impossible to achieve by direct separation of these materials from crude petroleum. They result from chemical processes that change the molecular nature of selected portions of crude petroleum; in other words, they are the products of refining or they are refined products.
Refining petroleum is a complex series of steps by which the original crude material is eventually converted into salable products with the desired qualities and, perhaps more important, in the amounts dictated by the market.
In fact, a refinery is essentially a group of manufacturing plants that vary in number with the variety of products produced; refinery processes must be selected and products manufactured to give a balanced operation: that is, crude oil must be converted into products according to the rate of sale of each. For example, the manufacture of products from the lower boiling portion of petroleum automatically produces a certain amount of higher boiling components. If the latter cannot be sold as, say, heavy fuel oil, they accumulate until refinery storage facilities are full. To prevent the occurrence of such a situation, the refinery must be flexible and able to change operations as needed. This usually means more processes - a cracking process to change an excess of heavy fuel oil into more gasoline with coke as the residual product or a vacuum distillation process to separate the heavy oil into lubricating oil stocks and asphalt - to accommodate the ever-changing demands of the market.
【课文参考译文】
石油炼制
石油炼制就是将石油分离成各种馏分,然后将这些馏分经过处理,制成各种石油产品。大部分石油产品,包括煤油、燃料油、润滑油和蜡,都是原油经过处理脱除不需要的成分而得到的石油馏分。其他石油产品,如汽油、芳烃溶剂、甚至包括某些沥青,则是通过完全或者部分合成而制得的。因为组成这些产品的物质成分无法通过直接分离原油获得,而是通过化工过程,改变原油选定部分的分子性质而获得的。换言之,它们是通过炼制得到的,或称为炼制产品。
石油炼制包含一系列复杂的过程。通过这些过程,石油原料最终转化成为可销售的产品。这些产品不仅满足质量要求,而更重要的是它们在数量上符合市场需求。
实际上,炼油厂从根本上说是一组生产装置,其数量根据产品的不同市场需求。炼油工艺须经选择,产品生产应该平衡:即从原油生产产品必须依据每种产品的销售量而进行。比如,从沸点较低的组分生产石油产品,就会自动产生一定数量的高沸点产品。如果这些高沸点产品不能作为重燃料油销售,这些产品就会积压,直到装满炼厂的储存设施。要避免这种情况出现,炼厂应灵活采取措施,并根据需要改变操作。一般而言,这意味着需要更多的工艺以适应不断变化的市场需求:运用裂化工艺将过剩重燃料油转化成汽油,而焦碳成为副产品;或者运用减压蒸馏工艺将重油分离成润滑油基础油和沥青。
附录一   科技英语构词法
科技英语构词法,所谓构词法即词的构成方法,即词在结构上的规律。科技英语构词法的特点如下:1)外来语多,很多来自希腊语和拉丁语;2)构词方法多,除了非科技英语中常用的三种构词法—转化、派生及合成法外,还普遍采用压缩法、混成法、符号法和字母象形法。
1 转化(conversion):
由一种词转化为另一种词,叫转化法,例如:
原词
新词
原词
新词
water (                               n, 水)    → water (                               v, 浇水)
dry (                               adj, 干的)   → dry (                               v, 烘干)
charge (                               n, 电荷) → charge (                               v, 充电)
slow (                               adj, 慢的)  → slow (                               v, 减慢)
yield (                               n, 产率)  → yield (                               v, 生成)
black (                               adv, 向后) → black (                               v, 后退)
2. 派生(derivation):
通过加前、后缀构成一个新词。
2.1 数目表示法:
名称
符号
举例
tera
T
10                               12    
兆兆
giga
G
10                               9    
千兆
mega
M
10                               6    
megapascal
MPa
10                               6
kilo
k
10                               3    
kilometer
km
千米
hector
h
10                               2    
hectorgram
百米
deca
da
10                               1    
decameter
十米
deci
d
10                               -1    
decimter
dm
分米
centi
c
10                               -2    
centimeter
cm
厘米
milli
m
10                               -3    
milligram
mg
毫克
micro
μ
10                               -6    
micrometer
μm
微米
nano
n
10                               -9    
毫微
nanometer
nm
纳米
pico
p
10                               -12    
微微
picosecond
ps
皮秒
femto
f
10                               -15    
毫微微
femto-second
fs
飞秒
atto
a
10                               -18    
微微微
atto second
as
阿托秒
数字
前缀
烷烃
烯烃
中文译名
meth-
methane
Methanol
甲烷、甲基,甲醇
eth-
ethane
Ethane, ethylene
Ethyne, acetylene
ethanol, alcohol
乙烷,乙基,乙烯,乙炔,乙醇
prop-
propane
propene
propanol
propanol
丙烷,丙烯,丙炔,丙醇
but-
butane
butene
butyne
butanol
丁烷,丁烯,丁炔,丁醇
pent-
pentane
pentene
pentyne
pentanol
戊烷,戊烯,戊炔,戊醇
hex-
hexane
hexene
hexyne
hexanol
己烷,己烯,己炔,己醇
hept-
heptane
heptene
heptyne
heptanol
庚烷,庚烯,庚炔,庚醇
oct-
octane
octene
octyne
octanol
辛烷,辛烯,辛炔,辛醇
non-
nonane
nonene
nonyne
nonanol
壬烷,壬烯,壬炔,壬醇
dec-
decane
decene
decyne
< , td width="81">
decanol
癸烷,癸烯,癸炔,癸醇

意义
举例
mono-
单(重)
monocrystal (单晶)
di-
双(重)
carbon dioxide (二氧化碳)
tri-
三(重)
trimethyl aluminium (三甲基铝)
tetra-
四(重)
tetramethyl ammonium chloride(四甲基氯化铵)
2.2 常用词缀
2.2.1 变动词为名词
意义
举例
-er
……者
generate (发生、产生) → generator (发电机)
-tion
-sion
-ment
-ure
-sis
过程,结果,状态
operate (操作)→ operation (操作或运转结果)
inject (注射)→ injection (注射过程或结果)
treat (处理) → treatment (治疗、处理)
press (压) → pressure (压力、强制)
analyse (分析)→ analysis (分析)
-ing
动词+ing
thicken  (增稠) → thickening (增稠过程)
2.2.2 变名词、形容词为动词
意义
举例
-fy
-ize
……化
liquid (液体) → liquidify (液化)
optimum (最佳) → optimumize (最佳化)
-ate
使……起来
active (活跃的) → activate (使活跃起来)
2.2.3 变形容词为名词
意义
举例
-ity
性质、状态
viscous (粘的) → viscosity (粘性)
-cy
-ce
性质、状态
frequent (频繁的) → frequency (频率)
present (现存的) → presence (存在)
-ness
性质、状态
thick (厚的) → thickness (厚度)
2.2.4 变名词仍为名词
意义
举例
-ist
……学家、者
science (科学) → scientist (科学家)
-er
-or
-ian
-ician
-arian
……学家、者
astronomy (天文学) → astronomer (天文学家)
library (图书馆) → librarian (图书管理员)
mathematics (数学) → mathematician (数学家)
vegetable (素菜) → vegetarian (素食主义者)
-age
……量,……数
dose (剂量) → dosage (用量)
2.2.5 变名词、名词为形容词
意义
举例
-ous
……的
pore (孔) → porous (多孔的)
-ic
-tic
……的
graph (图) → graphic (图解的)
analyse (分析) → analytic (分析的)
-ful
有……的
power (力量) → powerful (有力的)
-able
可……的
solve (溶解) → solvable (可溶解的)
-al
……的
function (功能) → functional (功能的)
-ar
……的
pole (极) → polar (极的)
-ive
……的
act (行动、动作)→ active (活动的)
-ile
……的
infant (小儿)→ infantile (小儿的)
-y
……的
milk (乳) →milky (乳状的)
-ed
成……的
powder (粉) → powdered (变成粉的)
-lent
多……的
virus (病毒) → virulent (剧毒的)
-scent
产生、发展的过程
lumin [(拉丁语)光)] → luminescent (发光的)
2.2.6 化学中常用有机物词缀
意义
举例
-ane
烷烃
methane (甲烷)
-ene
烯烃
ethane (乙烯)
-yne
炔烃
butyne  (丁炔)
-ol
alcohol (乙醇)
-al
propanal (丙醛)
-one
acetone (丙酮)
-amine
胺(氨的一个H原子被别的有机原子团所取代而形成的化学物)
phenylamine (苯胺)
-amide
酰胺(氨的一个H原子被一个有机酸基取代而形成的化合物)
acetamide (乙酰胺)
-yl
化合基
hydroxyl (乙酰基)
-sol
溶胶
hydrosol (水溶胶)
-ase
霉的词尾
diastase (氧化酶)
-mycin
霉素的词尾
streptomycin (链霉素)
-ose
碳水化合物
dextrose (右旋糖)
-ate
由(正)酸而形成的盐
nitrate (硝酸盐)
-ite
由亚酸而形成的盐
sulphite (亚硫酸盐)
-ic
形容词后缀。在酸的名称中,带-ic的酸比带-ous的酸含氧量高,在盐的名称中,带-ic的金属比带-ous的金属化合价更高
nitric acid (硝酸); ferric (正铁的)
-ous
nitrous acid (亚硝酸); ferrous (亚铁的)
-ide
两种元素的化合物
copper oxide (氧化铜)
3. 合成法(composition):由两个已有的词合成一个新词。
形式
单词
意义
副词+过去分词
well-known
著名的
名词+名词
carbon steel
rust-resistance
碳钢
防锈
名词+过去分词
computer-oriented
研制计算机的
介词+名词
by-produce
副产物
动词+副词
make-up
clean-up
化妆品
检查
形容词+名词
atomic weight
periodic table
原子量
周期表
动词+代词+副词
pick-me-up
兴奋剂
副词+介词+名词
out-of-door
户外
4. 压缩法(shortening):
只取词头字母,如
单词
来源
中文译文
TOEFL
Test of English as a Foreign Language
非英语国家英语水平考试
ppm
parts per million
百万分之一
将单词删去一些字母,如
单词
来源
中文译文
lab
laboratory
实验室
kilo
kilogram
千克、公斤
flu
influenza
流行性感冒
5. 混成法(blending), 把两个词的一头一尾连在一起.构成一个新词,如:
单词
来源
中文译文
positron
positive (正的)+electron (电子)
正电子
medicare
medical (医学的)十care (照管)
医疗保障
aldehyde
alcohol (醇)十dehydrogenation (脱氢)
附录二  化学元素表
1、元素周期表
2、元素中英文名称对照表
Atomic
Number
Element
Symbol
English
Name
中 文
名 称
Atomic
Number
Element
Symbol
English
Name
中 文
名 称
1
H
hydrogen
41
Nb
niobium
2
He
helium
42
Mo
molybdenum
3
Li
lithium
43
Tc
technetium
4
Be
beryllium
44
Ru
ruthenium
5
B
boron
45
Rh
rhodium
6
C
carbon
46
Pd
palladium
7
N
nitrogen
47
Ag
silver
8
O
oxygen
48
Cd
cadmium
9
F
fluorine
49
In
indium
10
Ne
neon
50
Sn
tin
11
Na
sodium
51
Sb
antimony
12
Mg
magnesium
52
Te
tellurium
13
Al
aluminium
53
I
iodine
14
Si
silicon
54
Xe
xenon
15
P
phosphorus
55
Cs
caesium
16
S
sulphur
56
Ba
barium
17
Cl
chlorine
58
Ce
cerium
18
Ar,A
argon
59
Pr
praseodymium
19
K
potassium
60
Nd
neodymium
20
Ca
calcium
61
Pm
promethium
21
Sc
scandium
62
Sm
samarium
22
Ti
titanium
63
Eu
europium
23
V
vanadium
64
Gd
gadolinium
24
Cr
chromium
65
Tb
terbium
25
Mn
manganese
66
Dy
dysprosium
26
Fe
iron
67
Ho
holmium
27
Co
cobalt
68
Er
erbium
28
Ni
nickel
69
Tm
thulium
29
Cu
copper
70
Yb
ytterbium
30
Zn
zinc
71
Lu
lutetium
31
Ga
gallium
72
Hf
hafnium
32
Ge
germanium
73
Ta
tantalum
33
As
arsenic
74
W
tungsten
34
Se
selenium
75
La
lanthanum
35
Br
bromine
75
Re
rhenium
36
Kr
krypton
76
Os
osmium
37
Rb
rubidium
77
Ir
iridium
38
Sr
strontium
78
Pt
platinum
39
Y
yttrium
79
Au
gold
40
Zr
zirconium
80
Hg
mercury
81
Tl
thallium
96
Cm
curium
82
Pb
lead
97
Bk
berkelium
83
Bi
bismuth
98
Cf
californium
84
Po
polonium
99
Es
einsteinium
85
At
astatine
100
Fm
fermium
86
Rn
radon
101
Md
mendelevium
87
Fr
francium
102
No
nobelium
88
Ra
radium
103
Lr
lawrencium
89
Ac
actinium
104*
Rf
rutherfordium
90
Th
thorium
105
Db
dubnium
91
Pa
protactinium
106
Sg
seaborgium
92
U
uranium
107
Bh
bohrium
93
Np
neptunium
108
Hs
hassium
94
Pu
plutonium
109
Mt
meitnerium
95
Am
americium
110
Ds
darmstadtium
*从104号元素起,其名称来自IUPAC Periodic Table of the Elements(dated 3 October 2005)。
**这些词的读音系编者自注,仅供参考。
附录三   部分重要组织机构名称中英文对照表
缩写
英语名称
汉语名称
ACS
American Chemical Society
美国化学会
AIChE
American Institute of Chemical Engineers
美国化学工程师学会
AOAC
Association of Analytical Communities
美国官方分析化学师协会
CAC
Codex Alimentarius Commission
国际食品法典委员会
CAS
Chemical Abstracts Service
美国化学文摘服务
ECS
European Chemical Society
欧洲化学会
EIA
Environment impact assessment
环境影响评价
EP
European Pharmacopoeia
欧洲药典
EPA
U.S. Environment Protection Agency
美国环境保护机构
EPO
European Patent Office
欧洲专利局
ESA
Ecological Society of America
美国生态学会
FAO
Food and Agricultural Organization of the United Nations
联合国粮食及农业组织
FDA
U.S. Food and Drug Administration
美国食品与药品管理局
IAEA
International Atomic Energy Agency
国际原子能机构
ISO
International Standards Organization
国际标准组织
IUPAC
International Union Of Pure And Applied Chemistry
国际纯粹化学与应用化学联合会
JPO
Japanese Patent Office
日本专利局
RS
Royal Society
英国皇家学会
UNESCO
United Nations Educational, Scientific and Cultural Organization
联合国教育、科学及文化组织
UNIDO
United Nations Industrial Development Organization
联合国工业发展组织
USPTO
United States Patent and Trademark Office
美国专利和商标局
WHO
World Health Organization
世界卫生组织
WIPO
World Intellectual Property Organization
世界知识产权组织
WTO
World Trade Organization
世界贸易组织

参 考 文 献
[1] 张培基,喻云根,李宗杰等.英汉翻译教程[M].上海:上海外语教育出版社,1980.
[2] 保清,苻之.科技英语翻译理论与技巧[M].北京:中国农业机械出版社,1983.
[3] 王泉水.科技英语翻译技巧[M].天津:天津科学技术出版社,1991.
[4] 阎庆甲,阎文培.科技英语翻译方法[M].北京:冶金工业出版社,1992,第2版
[5] 张裕平,姚树文,龚文君.化学化工专业英语[M].北京:化学工业出版社,2007.
[6] 童丽萍,陈治业.数、符号、公式、图形的英文表达[M].南京:东南大学出版社,2000.
[7] 唐冬雁,刘本才.应用化学专业英语[M].哈尔滨:哈尔滨工业大学出版社,2005,第3版.
[8] 张永勤,刘福胜.生物与制药工程专业英语[M].北京:化学工业出版社,2007.
[9] 杨嘉谟,包传平,余卫华等.化学化工专业英语[M].武汉:武汉大学出版社,1997.
[10] 刘宇红.化学化工专业英语[M]. 北京, :中国轻工业出版社,2000.< , /div>
[11] Jerry A. Nathanson著.周律,李涛译.环境技术基础—供水、废物管理与污染控制[M].北京:清华大学出版社, 2007.
[12] 清华大学《英汉技术词典》编写组.英汉技术词典.北京:国防工业出版社,1985.
[13]高绵章主编, 化学论文英语写作.[M], 北京:中国石化出版社,2003.